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Abstract
We study a model of two self-avoiding walks that are allowed to cross. An
attractive energy is associated with each crossing. We present a number of exact
results on the free energy of this model and show the existence of a zipping
temperature, below which the number of crossings becomes macroscopic. We
give heuristic arguments which show that in d = 2 and d = 3 this zipping
transition occurs at infinite temperature. Exact enumeration and Monte Carlo
simulations on the square lattice strongly support this conjecture and lead to a
precise value for the crossover exponent.

PACS numbers: 05.50.+q, 02.60.−x, 64.60.−i

1. Introduction

Polymers in a good solvent are usually modelled as self-avoiding walks [1, 2]. There exists
by now an extensive literature on the critical and topological properties of single self-avoiding
walks, which should describe the situation of an extremely diluted polymer solution.

On the other hand, much less is known on the properties of a collection of several self-
avoiding walks, which can either cross each other or can be mutually avoiding. Such situations
occur naturally when studying networks of crosslinked polymers [3].

The first simple step in studying the implications of crosslinking on polymer properties
consists of investigating the behaviour of two polymers that are close to each other in space
and that can interact through attractive or repulsive interactions. This leads to models for
pairs of self-avoiding walks with mutual interactions. Several models of this type have been
investigated recently. In some of these, the two polymers are considered to be mutually
avoiding and are thought to represent the two strands of DNA [4]. One is then, in particular,
interested in the denaturation transition where the two strands decouple. Models of this kind
have also been discussed in the context of diblock copolymers [5, 6].
3 Aspirant Fonds voor Wetenschappelijk Onderzoek-Vlaanderen.
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In this paper, we investigate in detail a model of two self-avoiding walks which are allowed
to cross each other an arbitrary number of times. An attractive energy is associated with each
crossing. One expects that below a certain transition temperature the two polymers share a
macroscopic number of monomers, in which case we call the polymers zipped. In recent
years, the zipping transition in this kind of model has been studied mainly on fractal lattices
[7–9].

Here we investigate the Euclidean case. We present a number of rigorous results that hold
in arbitrary dimension, together with a detailed numerical investigation of the model on the
square lattice. Therefore, we performed both exact enumerations and Monte Carlo simulations
using the pivot algorithm.

We would like to point out that besides the situations described above, the present model
is also relevant for the behaviour of the self-avoiding walk (SAW) in a random environment
[10–12]. Indeed, in their study of the directed polymer in a random environment (DPRM),
Cook and Derrida [13] show how a model of two random walks, that gain an energy −1 at
each mutual intersection point, can lead to an upper bound for the transition temperature Tc of
the DPRM. Above that transition, randomness is irrelevant and the critical properties of the
DPRM are just those of ordinary random walks. Moreover, the free energy of the DPRM equals
its annealed average with probability one. Below the transition temperature, randomness is
relevant, the quenched and annealed free energy become different and the properties of the
DPRM are described by those of a zero temperature strong disorder fixed point. It is easy to
check that exactly the same ideas apply to the SAW in a random medium. In that case as well,
it is in principle possible to obtain information on the transition temperature below which
disorder becomes relevant, from a study of the behaviour of two SAWs with an attractive
energy associated to each crossing. We, therefore, hope that the results presented here could
be a first step in further understanding of the problem of a SAW in a random medium.

This paper is organized as follows. In section 2 we define the model and its main properties
of interest. In section 3 a number of exact results on the free energy and the order parameter
are presented. In section 4, we give an heuristic argument on the location of the zipping
temperature and a first estimate of the associated crossover exponent. We then present the
results from our numerical investigation of the model. Finally, in section 5 some concluding
remarks are given.

2. The model

Let L be some regular d-dimensional lattice. An N-step self-avoiding walk (N-SAW)ω on L is
a sequence of distinct points (ω0, ω1, . . . , ωN ) inL such that each point is a nearest neighbour
of its predecessor. We assume that all the walks begin at the origin (ω0 = 0). Let�N be the set
of N-step walks starting at the origin. The cardinality of �N is denoted as cN. It is known that
the number of different N-SAWs grows exponentially in N. One can show rigorously that [2]

lim
N→∞

1

N
ln cN = lnµ (1)

where µ is a lattice-dependent constant, called the connective constant. As an example, for
the square lattice, µ is known to high accuracy µ = 2.638159 ± 0.000002 [14].

Another quantity of interest is any measure of the size of the N-SAWs. One can think in
particular of the end-to-end distance or the radius of gyration. The average squared size of all
N-SAWs, denoted as

〈
R2
N

〉
, is generally believed to grow as a power of N,〈

R2
N

〉 ∼ N2ν . (2)

The exponent ν is a universal quantity. Its value equals ν = 3/4 in d = 2 [15].



Zipping transition in a model of two crosslinked polymers 9779

Now consider pairs of N-SAWs
(
ω(1), ω(2)

)
with the same starting point and let the

number of vertices they have in common be denoted as I
(
ω(1) , ω(2)

)
+ 1. We define gN(I) as

the number of pairs of SAWs that have I + 1 vertices in common. With each crossing (apart
from the starting point) we associate an energy −1. The equilibrium statistical mechanics of
this model is then determined by the following (canonical) partition function (for fixed size
N):

TN(β) =
N∑
I=0

gN(I) exp(βI) (3)

where β is the inverse of the temperature T. β = 0 corresponds to the case that the polymers
are independent (i.e. infinite temperature), β < 0 to a repulsive interaction between the two
walks and β > 0 to attractive interactions. We expect that there exists a critical temperature βz
such that for β > βz, and for large N, the two SAWs share a macroscopic number of vertices.
In that case we call the two SAWs zipped. In this paper we investigate the transition from the
zipped to the unzipped phase, mostly for the square lattice.

The free energy of the zipping model (in the thermodynamic limit) is given by

t (β) = lim
N→∞

1

N
ln TN(β). (4)

Unfortunately, it is not possible to prove rigorously that the limit in (4) exists for all values of
β, but we establish partial proofs in the next section.

The expected number of intersections between two N-SAWs is given by

〈IN 〉 (β) = 1

TN(β)

N∑
I=0

IgN (I) exp(βI) = d

dβ
ln TN(β)

so that the expected fraction of crossings is given by

〈mN 〉 (β) = 〈IN 〉 (β)
N

. (5)

This quantity is closely related to the order parameter

m(β) := d

dβ
lim
N→∞

1

N
ln TN(β) = d

dβ
t (β). (6)

3. Some exact results about the zipping problem

In this section we prove that the free energy function t (β) exists for β � 0 and has to be
non-analytic at some point and hence there must exist an (inverse) critical temperature βz,
which we call the zipping temperature. In the second part of this section, we reduce our
configuration space �N × �N to a smaller one for which we can prove rigorously that the
free energy exists. If we assume the existence of the free energy, we will be able to derive a
number of mathematical properties for t (β) and m(β).

3.1. Existence of a phase transition

For β � 0, we can bound the partition sum TN(β) as follows:

TN(−∞) � TN(β) � TN(0). (7)

However, TN (0) is just the partition function of two non-interacting SAWs and is therefore
given by c2

N . Moreover, at β = −∞, the only remaining term in (3) is the term with I = 0.
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This means that the only contribution in the partition sum comes from the pairs of SAWs with
only one crossing, i.e. the origin. Any such pair (ω1, ω2) can be seen as a SAW of length
2N in two distinct ways, depending on the chosen starting point. However, the pair (ω2, ω1)

gives rise to the same two SAWs of length 2N. Hence, we see that the number of such pairs
gN (0) is the same as the number of 2N-step walks c2N . After taking the appropriate limits in
(7) we obtain for β � 0

2 lnµ � t (β) � 2 lnµ.

These inequalities prove the existence of the free energy for negative β-values and moreover
they show that

t (β) = 2 lnµ β � 0. (8)

Next, we obtain from (3) the lower bound for the partition function for β � 0

TN(β) � gN(N) exp(βN) � cN exp(βN) (9)

where the last term in (3) represents the term for which the two SAWs coincide. If we also
assume the existence of the free energy for positive β-values, we have

t (β) � lnµ + β. (10)

Together (8) and (10) show that t (β) is non-analytic and that there must exist a zipping
temperature

0 � βz � lnµ (11)

such that t (β) = 2 lnµ, forβ � βz and t (β) > 2 lnµ for β > βz.
Finally, it is also possible to find an upper bound for t (β) for positive β-values. In that

case, we have for β � 0

TN(β) � c2
N exp(βN) (12)

and thus

t (β) � 2 lnµ + β. (13)

Both bounds tell us that for β � 0

lnµ + β � t (β) � 2 lnµ + β. (14)

3.2. Convergence of the free energy for a subclass

In the previous subsection we have seen that it is not possible to prove the existence of the free
energy for β > 0. Following tradition in the field [2, 16] we, therefore, turn to the subclass
of unfolded walks for which existence of the free energy can usually be more easily proved.
In some cases, such as that of a SAW near a surface or interface [16], existence of the free
energy for a subclass can be used as a lemma in proving the existence of the free energy for
the class of all SAWs. For the present case, we were not able to perform a similar final step.
Nevertheless, we think that existence of the free energy for the unfolded walks is interesting
in itself and we, therefore, present a proof below.

A self-avoiding walk ω ∈ �N can be written as (ω0, . . . , ωN ) where each ωi is a site
of a regular lattice. Consider next the particular case of a d-dimensional hyper cubic lattice
and denote the last coordinate of ωi as yi . Then, we define the subset of the unfolded walks
CN ⊂ �N as the set of all N-SAWs satisfying

0 = y0 � yi < yN ∀i = 1, . . . , N − 1. (15)
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Now, consider the set LN containing all pairs of N-step walks from CN with the same ending
point, i.e.

LN :=
{(
ω(1), ω(2)) ∈ CN × CN : ω(1)

N = ω
(2)
N

}
. (16)

The cardinality of LN is written as pN and the number of such pairs with I + 1 sites in common
is denoted as pN (I). The set of these latter pairs is written as LNI . As in the more general
problem, we associate an energy −1 to every site the walks in the pair have in common (apart
from the origin). This leads to the introduction of the partition sum

LN(β) =
N∑
I=0

pN(I) exp(βI). (17)

We shall prove that the free energy for this class exists, i.e.

l(β) := lim
N→∞

1

N
lnLN(β) (18)

converges for every β.
Therefore, fix N, N ′ and I, I ′ arbitrary in N. Let

(
ω(1), ω(2)

) ∈ LNI and
(
�(1), �(2)

) ∈
LN ′I ′ . We then construct

(
ϒ(1), ϒ(2)

) ∈ LN+N ′,I+I ′ by concatenating �(i) withω(i) (for each
i = 1, 2). This concatenation is performed in a standard way [2], i.e. by putting the starting
point of

(
�(1), �(2)

)
on the end point of

(
ω(1), ω(2)

)
. Thanks to (15) the results ϒ(i) are indeed

self-avoiding for each i. It follows that

pN(I) · pN ′(I ′) � pN+N ′(I + I ′). (19)

Let us next fix β and consider the product of the partition functions LN(β) and LN ′(β):

LN(β) · LN ′(β) =
N∑
I=0

N ′∑
I ′=0

pN(I)pN ′(I) exp[β(I + I ′)]

�
N∑
I=0

N ′∑
I ′=0

pN+N ′(I + I ′) exp[β(I + I ′)]

� (N + N ′ + 1)LN+N ′(β).

So we see that lnLN(β) satisfies the generalized subaddivity with respect to the array ln (N + 1)
and since

∞∑
N=0

ln(N + 1)

N(N + 1)
< ∞

we know [17] that for each β

lim
N→∞

lnLN(β)

N

exists in ] − ∞,+∞]. However, for each β the partition function is bounded,

LN(β) =
N∑
I=0

pN(I) exp(βI) � (2d)N
N∑
I=0

exp(|β| I)

� (2d)N(N + 1) exp(|β|N) � (4d)N exp(|β|N)

where d denotes the dimension. When we take the logarithm and divide by N we see that for
each β, 1/N lnLN(β) is bounded by ln (4d) + |β| so that the free energy l(β) exists and is
finite for all β.
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3.3. General properties of the free energy

If we assume the existence of the free energy t (β), then we can prove a number of mathematical
properties. More precisely, we prove the following assertions:

(i) The free energy is non-decreasing with β.
(ii) The free energy is a convex function, i.e. ∀ β1, β2 and ∀0 < p < 1:

t (pβ1 + (1 − p)β2) � p t(β1) + (1 − p) t (β2).

(iii) The free energy is bounded in every interval in β.
(iv) The free energy is a continuous function that possesses left-hand and right-hand

derivatives.
(v) The right-hand derivative is not less than the left-hand derivative and both derivatives

increase with β.
(vi) The derivative t ′(β) exists, except perhaps for an enumerable set of values.

(vii) The convergence of the row(
1

N
ln TN(β)

)∞

N=1

is in fact uniform over any bounded interval in β.

We now prove these statements.

(i) This is trivial.
(ii) To establish the convexity of t (β), we first prove that ln TN is a convex function. Because

this latter function is bounded from above in each interval in β, it is sufficient to prove
[18] that for all β1 and β2

ln TN

(
1

2
β1 +

1

2
β2

)
� 1

2
(ln TN(β1) + ln TN(β2)) .

This is essentially a simple application of the Cauchy–Schwarz inequality:

TN(β1) · TN(β2) =
N∑
I=0

(√
gN(I) eβ1I/2

)2 N∑
I ′=0

(√
gN(I ′) eβ2I

′./2
)2

�
(

N∑
I=0

gN(I) e(β1+β2)I/2

)2

= T 2
N

(
β1 + β2

2

)
.

Taking the logarithm yields the desired result. However, the limit (point-wise) of convex
functions is again convex. This can easily be seen. Take β1, β2 ∈ R and p ∈ ]0, 1[:

t (pβ1 + (1 − p)β2) = lim
N→∞

1

n
ln TN (pβ1 + (1 − p)β2)

� lim
N→∞

1

n
[p ln TN(β1) + (1 − p) ln TN(β2)]

= pt(β1) + (1 − p)t (β2)

where we used extensively the assumption that the free energy (as a limit) exists.
(iii) The fact that the free energy is bounded in every interval in β is a direct consequence of

the bounds (14).
(iv) A convex function that is bounded in every interval can be proved to be continuous and

to possess left-hand and right-hand derivatives everywhere.
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(v) Moreover, in the theory of convex functions one can also show that the right-hand
derivative is not less than the left-hand derivative and that both derivatives increase
with β.

(vi) Under the same conditions one can also prove that the derivative exists except perhaps for
an enumerable set of values.

(vii) Since TN (β) is given by

TN(β) :=
N∑
I=0

gN(I) exp(βI)

we see that 1/N ln TN (β) is a analytic function of β. We can bound this set of functions
uniformly (i.e. independent of n) as follows (for β > 0):

β � ln cN
N

+ β � ln TN(β)

N
� 2

ln cN
N

+ β � 2 ln (2d) + β

where d is the dimension. For any compact interval in β, the set of analytic functions
1/N ln TN is bounded uniformly and therefore this set has to be equicontinuous [19]. For
every equicontinuous set of functions that converge pointwise to a function t (β), it can
be shown that the convergence is uniform [19]. So we conclude that we have a uniform
convergence on any compact interval in β.

3.4. The order parameter

We now show that the order parameter is zero in the high-temperature phase (β � βz) and
becomes one in the limit of zero temperature (β → ∞). Remember that

m(β) = d

dβ
lim
N→∞

1

N
ln TN(β) = d

dβ
t (β). (20)

Since for β � βz the free energy is constant, we immediately see that m(β) = 0 forβ � βz.
On the other hand, we now show that m(β) → 1 for β → ∞. Observe that m(β) is the
derivative of the convex function t (β) (we proved the existence of this derivative except for
perhaps an enumerable set of points). Property (v) ensures us that m(β) is non-decreasing.
We now show that this function is bounded by 1. For this purpose, suppose that there exists β0

such that m (β0) > 1. We then know that the tangent through t (β0) cuts the upper bound (14)
of t (β) in β = (2 lnµ + β0m(β0) − t (β0))/(m(β0) − 1). Since the function t (β) is convex,
we know that it lies above the tangent and hence it has to cut the upper bound as well. This
leads to a contradiction and we conclude that

m(β) � 1 ∀β.
Because any non-decreasing, bounded function has to converge, we know that limβ→∞ m(β)

exists.
Next, we show that it has to converge to 1. Suppose that

lim
β→∞

m(β) = 1 − λ

for some λ > 0. This means that

(∀ε > 0) (∃M > 0) (∀β � M) (|m(β)− (1 − λ)| < ε) .

In particular we can choose ε = λ/2. Then there is an M > 0 such that for all β � M

m(β) � 1 − λ/2.
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If we apply the mean value theorem of Lagrange to t (β), we derive the existence of c ∈ ]βz, β[
such that

m(c) = t (β)− t (βz)

β − βz
= t (β)− 2 lnµ

β − βz
.

We now show that m is non-decreasing, so that m(c) � m(β), together with the lower bound
(14) on t (β)

(lnµ + β)− 2 lnµ � t (β)− 2 lnµ = m(c)(β − βz) � m(β)β � (1 − λ/2)β.

And hence for all β � M

λ

2
β � lnµ

which clearly leads to a contradiction. We can conclude that

lim
β→∞

m(β) = 1. (21)

We can also show that for any finite β, the order parameter is the limit of the fraction of
shared sites, i.e.

m(β) = lim
N→∞

〈mN 〉(β). (22)

This follows immediately from property (vii) that says the row(
1

N
ln TN(β)

)∞

N=1

converges uniformly over any bounded interval in β, since we can interchange derivatives and
limits for uniformly convergent series of functions.

4. Numerical results

Having established the existence of a zipping temperature, we now want to obtain more
information on the location of βz and if possible about the critical exponents associated with
this transition. Unfortunately, we have not been able to put a more rigorous bound on βz than
that given above, i.e. 0 � βz � lnµ. However, we can give several arguments that show
βz = 0 exactly in two dimensions and probably also in three dimensions. The first one is an
intuitive, geometrical, argument that is known under the name of codimension additivity and
which goes back to Mandelbrot [20]. The second and third argument use numerical techniques
such as exact enumerations and dynamic Monte Carlo methods.

4.1. Codimension additivity

From (22) and the fact that m(β) > 0 in the zipped phase, we have

〈IN 〉 (β) ∼ N β > βz. (23)

In the unzipped phase, we expect

〈IN 〉 (β) ≈ c β < βz N � 1 (24)

where c is some constant (in N ). Finally, at the zipping temperature, one can expect from
the analogy with such problems as the adsorption of a SAW onto a hyperplane [21] and from
general scaling arguments that

〈IN 〉 (βz) ∼ Nϕ (25)
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where ϕ < 1 is the crossover exponent. Hence, only at the zipping transition should the
number of contacts grow as a power (strictly less then 1) of N.

The codimension additivity argument says that the codimension of the intersection points
of two D-dimensional (fractal) objects is given by the sum of their codimensions, i.e. by
2 (d − D), where d is the dimension of the embedding space. Hence, if DI is the fractal
dimension of the set of intersection points, one obtains

DI = 2D − d. (26)

This intuitive argument implies, e.g. in d = 3, that two generic lines do not intersect, whereas
two arbitrary planes have a line as intersection. The argument can be established as a theorem
for two transversal manifolds [22]. For statistical fractals such as SAWs, it probably holds
only approximately, but it is still of interest to see what we learn from the set of intersections
of two SAWs 4.

The fractal dimension of a SAW is D = 1/ν. Hence (26) predicts that the dimension of
the intersection points of two SAWs in d = 2 equals DI = 2/3. Therefore, we expect the
number of intersection points NI to grow as

NI ∼ (RN)
DI ∼ NνDI ∼ N1/2 (d = 2). (27)

In three dimensions the ν-exponent of a SAW is not known exactly but the Flory-value ν = 3/5
gives a very good estimate. Hence we find to a good approximation

NI ∼ N1/5 (d = 3) (28)

Finally, for d � 4 (where ν takes on the random walk value 1/2) we get

NI ∼ N(4−d)/2 (d � 4) (29)

In these considerations we did not take into account any interaction between the SAWs
hence they could be of relevance at β = 0 in the zipping problem. Comparing (27) and (28)
with (25) we are led to the conclusion that in d = 2 and d = 3, the non-interacting SAWs are
precisely at the zipping point and that in d = 2, ϕ = 1/2, while in d = 3, ϕ ≈ 1/5. In d � 4,
from (29), we predict that βz > 0.

This argument by itself is too rough to believe but further evidence for its correctness
can be given. For example, exact renormalization group calculations of the zipping problem
on Sierpinski gasket type fractals were performed by Kumar and Singh [7]. For the case
of a simple Sierpinski gasket with d = ln 3/ ln 2 it was shown that indeed βz = 0 exactly.
Moreover, the crossover exponent was also determined exactly with the result ϕ = 0.7491.
On the other hand, using the exactly known fractal dimension of the SAW on a Sierpinski
gasket D = 1/ν = log (2.3819)/ log (2), the codimension additivity argument leads to the
(approximate) prediction ϕa = 0.7342, which is indeed very close to the exact value.

In later work, the same authors studied generalized Sierpinski gaskets with a rescaling
factor b [8]. In table 1 we compare for a few b-values the exactly determined ϕ-value with
those coming from the codimension argument.

As can be seen, one obtains from the codimension argument estimates for the crossover
exponent that are correct up to a few percent. A similar trend holds for larger b values where
approximate values for ν and ϕ were obtained from a Monte Carlo renormalization study [9].

Below we present numerical results that show, on the square lattice also, βz = 0.
Moreover, the value of the crossover exponent turns out to be very close to 1/2.

4 Equation (26) was also obtained in [8] on the basis of finite-size scaling.
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Table 1. Estimates ϕa of the crossover exponent as determined from the codimension additivity
argument, compared with the exact value [8]. The second column and third column give
respectively the fractal dimension of the gasket and the ν-exponent of the SAW.

Sierpinski parameter b df ν ϕa Exact value of ϕ

2 1.5849 0.7986 0.7342 0.7491
3 1.6309 0.7936 0.7056 0.7246
4 1.6609 0.7884 0.6905 0.7117
5 1.6826 0.7840 0.6808 0.7042

4.2. Exact enumerations

The method of exact enumerations as applied to the zipping problem consists of generating
all pairs of SAWs on a computer and counting how many intersections they have. Due to the
exponential growth of this number, one is limited to rather small systems. Using a standard
backtracking technique, we were able to generate the coefficients gN (I ) for pairs of SAWs on
the square lattice for N up to 14 (see table 2, and define g0(I) = δI,0). From these data we can
calculate several thermodynamic quantities for finite systems, which in turn lead to estimates
of βz andϕ.

Firstly, we investigate the behaviour of the fraction of shared sites 〈mN 〉(β),

〈mN 〉(β) = d

dβ

1

N
ln TN(β) = 1

TN(β)

N∑
I=0

IgN (I) exp(βI). (30)

Plots of this quantity for different N-values are shown in figure 1. From the intersection
points of the curves for different N, finite size estimates of βz can be obtained. Unfortunately,
these do not allow us to accurately estimate the location of the zipping temperature in the
thermodynamic limit. In the inset of figure 1 we show the average number of crossings
between the two SAWs at infinite temperature. If this point corresponds to the zipping
temperature these data should follow the power law (25). We see that there is a reasonable fit
with this assumption and moreover we obtain as a first estimate ϕ = .68 ± .02 (from a log–log
plot of the data with N � 9).

The second derivative of the free energy

CN(β) = d2

dβ2

ln TN(β)

N

= 1

N


 1

TN(β)

N∑
I=0

I 2gN(I)eβI −
(

1

TN(β)

N∑
I=0

IgN (I)eβI
)2



= 1

N

[〈
I 2
N

〉
(β)− (〈IN 〉 (β))2]

gives a specific heat-like quantity CN(β). In figure 2 we show this quantity for different
values of N. As could be expected when a second order phase transition is present, there is a
peak in the specific heat that grows with N. The location of this peak βm(N) shifts to higher
temperatures when N is increased. From the theory of finite-size scaling it follows that βm(N)

approaches its (N → ∞)-limit with a power law. We verified that our data are consistent with
this type of convergence and the assumption βz = 0.

In the inset of figure 2 we show the maximum value of the specific heat CN(β) versus N.
This quantity grows as

CN(βm) ∼ N2ϕ−1. (31)
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Table 2. The coefficients gN (I ) obtained by exact enumerations on the square lattice for lengths
up to N = 14.

I N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

0 12 100 780 5 916 44 100 324 932 2374 444
1 4 32 336 2 040 17 112 116 216 912 648
2 12 136 1 464 11 200 90 208 683 496
3 44 464 6 288 48 096 428 656
4 116 1 584 22 872 212 520
5 372 5 096 86 168
6 980 16 664
7 2 988

I N = 8 N = 9 N = 10 N = 11

0 17 245 332 124 658 732 897 697 164 6444 560 484
1 6 348 344 47 895 656 336 679 592 2483 937 608
2 5 171 728 38 432 984 283 878 552 2080 000 160
3 3 157 816 25 471 816 185 802 176 1429 252 984
4 1 901 224 15 542 240 124 257 456 966 255 528
5 821 608 8 183 416 67 700 584 578 121 080
6 294 376 3 251 600 33 058 016 299 229 808
7 50 576 1 027 496 11 833 840 132 418 384
8 8 052 160 504 3 360 776 43 510 872
9 23 380 478 112 11 231 232
10 63 732 1466 064
11 181 060

I N = 12 N = 13 N = 14

0 46 146 397 316 329 712 786 220 2351 378 582 244
1 17 522 509 064 127 590 211 512 900 808 708 088
2 15 157 903 344 109 989 170 344 794 657 453 648
3 10 354 082 824 77 587 671 112 558 960 250 616
4 7 378 438 288 55 776 597 560 415 728 001 944
5 4 518 295 216 36 086 342 064 273 590 657 880
6 2 580 260 304 21 393 298 248 171 731 368 512
7 1 229 281 704 11 296 447 376 95 094 944 616
8 501 685 656 5049 942 624 47 285 608 752
9 151 539 024 1898 840 144 19 691 049 952
10 35 599 448 531 605 584 6874 344 608
11 4 319 832 114 982 960 1784 949 432
12 492 604 12 969 968 356 997 976
13 1384 284 37 628 712
14 3 762 156

When, as predicted above, ϕ = 1/2, this divergence should be replaced by a logarithmic one.
From a simple log–log fit of these data, we get the rough estimate ϕ = .69. We have also tried
some more sophisticated analysis methods on our enumeration results, but these failed to give
better insight in the problem, mainly due to the shortness of the series.

In conclusion, the exact enumeration data are consistent with the prediction βz = 0. The
value of the crossover exponent seems to be considerably higher then the prediction coming
from the codimension additivity argument. However, from the study of such problems as
the theta point of SAWs [23, 24] or branched polymers [25, 26], it is known that in general
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Figure 1. The average fraction of crossings 〈mN 〉(β) for different N-values as obtained from the
exact enumerations. The inset shows (on a log–log plot) the average number of crossings at β = 0
as a function of N.
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Figure 2. The specific heat CN (β) for N = 1, . . . ,14 as obtained from the exact enumerations. The
inset shows (on a log–log plot) the maximum value of the specific heat as a function of N.

a precise determination of the crossover exponent from exact enumeration data can be quite
difficult. For that reason, we also studied the zipping problem using a Monte Carlo technique.

4.3. Monte Carlo simulations

The idea of dynamic Monte Carlo methods (applied to the zipping model) is to invent
a (discrete-time) Markov chain with state space �N × �N , and having π(ω1, ω2) =
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Figure 3. Log–log plot of the average number of crossings for the zipping problem in d = 2 at
β = 0 as obtained from the exact enumerations (full circles) and the pivot algorithm (full circles
with error bars corresponding to a 95% confidence level). Also shown is a straight-line fit through
the data for the largest N values.

exp(βI (ω1, ω2))/TN(β) as its unique equilibrium distribution. Starting from an arbitrary
initial configuration, once the system has reached equilibrium, we measure time-averages,
which converge (as the run-time tends to infinity) to π-averages. To ensure that there exists
only one equilibrium distribution, the underlying Markov chain has to be irreducible or ergodic.
In practice, this means that every state can be reached from every other state in a finite number
of steps.

A very efficient algorithm of this type for studying SAWs of length N, is the well known
pivot algorithm [27]. This technique can be used for the zipping model at β = 0 in a trivial way
(since the two walks are independent). We have therefore performed extensive simulations,
again on the square lattice, for N up to 6000. For each N-value, we determined 50 000
independent SAW-pairs. For these we calculated the number of crossings I. In figure 3 we
show our results for 〈IN 〉(0). We include both the results of the exact enumerations (full
circles) and of the pivot algorithm (full circles with error bars indicated). As can be seen on
this log–log plot, there is a crossover from the behaviour for small N to the asymptotic power
law growth which only sets in at N ≈ 100. From a fit of the data for large N (see inset) we
obtain a more precise estimate of the exponent ϕ which is .516 ± .005.

The fact that 0 < ϕ < 1, together with the arguments given at the beginning of this
section (see (23)–(25)) provides convincing evidence that indeed βz = 0. As in the case of the
Sierpinski gasket, the numerically determined value of the crossover exponent seems to be a
few percent higher then that derived from the codimension additivity argument. However, our
data cannot rule out that ϕ = 1/2 exactly.

5. Conclusions

In this paper we studied a simple model for the zipping of two polymers. We established a
number of rigorous results. As an example, we showed the existence of a phase transition
in the model. These results were quite general and most of them hold on arbitrary lattices.
Using an heuristic argument we were led to conclude that in d = 2 and d = 3 the polymers
are zipped as soon as the interaction energy becomes attractive. This result was supported in
d = 2 by exact enumeration and Monte Carlo simulations. From these latter calculations an
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accurate estimate of the crossover exponent was obtained: ϕ = .516 ± .005, a value which is
close to the prediction of the codimension additivity argument that gives ϕ = 1/2.

Models similar to ours have been studied recently in the literature. As a first example,
we mention the diblock copolymer model introduced by Orlandini et al [5, 6]. That model
differs from ours in the fact that the two SAWs are also mutually self-avoiding. In that case,
numerical evidence shows convincingly that βz > 0 for all lattices studied. Moreover, it
could be shown exactly that in d = 2 the crossover exponent equals 9/16 = .5625. Another
model that is rather similar in spirit to the present one is the lattice version of the Poland and
Sheraga model [28] of DNA, studied in [29]. In that model the two SAWs can only intersect
at homologous sites, i.e. ω(1)

i �= ω
(2)
j , i �= j . When ω

(1)
i = ω

(2)
i an energy −1 is gained. This

model is now known to have a first order zipping transition at a βz > 0 [4, 30]. Finally, we
mention that a model of two interacting directed polymers was solved exactly by Iglói [31].
Also in that model, the two polymers only zip at a finite temperature.

There is an interesting analogy between models of pairs of polymers such as those
discussed above, and the behaviour of a SAW near a flat hyperplane. In that situation, one
investigates a SAW that gains an energy −1 for each monomer that lies in the hyperplane. In
the case that the SAW can cross the hyperplane, it is believed that for any finite temperature,
the polymer is adsorbed to the hyperplane, meaning that a macroscopic number of monomers
lies there [16]. On the other hand, if the SAW has to stay on one side of the hyperplane,
adsorption only occurs below a strictly finite adsorption temperature. We can interpret our
model as one for the adsorption of one polymer into another, and our results also suggest that
in this case, where crossing is allowed, there is always adsorption of the two polymers into
one another. On the other hand, in the model introduced in [5] the two SAWs cannot cross,
and as discussed above, they only zip below a finite temperature.

Finally, we think it would be of interest to investigate the present model in higher
dimensions. Also the implications of the current work for the problem of a SAW in a
random environment (see introduction) deserve further examination.
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